Abstract

BackgroundComparisons of functionally important changes at the molecular level in model systems have identified key adaptations driving isolation and speciation. In cichlids, for example, long wavelength-sensitive (LWS) opsins appear to play a role in mate choice and male color variation within and among species. To test the hypothesis that the evolution of elaborate coloration in male guppies (Poecilia reticulata) is also associated with opsin gene diversity, we sequenced long wavelength-sensitive (LWS) opsin genes in six species of the family Poeciliidae.ResultsSequences of four LWS opsin genes were amplified from the guppy genome and from mRNA isolated from adult guppy eyes. Variation in expression was quantified using qPCR. Three of the four genes encode opsins predicted to be most sensitive to different wavelengths of light because they vary at key amino acid positions. This family of LWS opsin genes was produced by a diversity of duplication events. One, an intronless gene, was produced prior to the divergence of families Fundulidae and Poeciliidae. Between-gene PCR and DNA sequencing show that two of the guppy LWS opsins are linked in an inverted orientation. This inverted tandem duplication event occurred near the base of the poeciliid tree in the common ancestor of Poecilia and Xiphophorus. The fourth sequence has been uncovered only in the genus Poecilia. In the guppies surveyed here, this sequence is a hybrid, with the 5' end most similar to one of the tandem duplicates and the 3' end identical to the other.ConclusionEnhanced wavelength discrimination, a possible consequence of opsin gene duplication and divergence, might have been an evolutionary prerequisite for color-based sexual selection and have led to the extraordinary coloration now observed in male guppies and in many other poeciliids.

Highlights

  • Comparisons of functionally important changes at the molecular level in model systems have identified key adaptations driving isolation and speciation

  • The purpose of this study was to characterize long wavelength-sensitive (LWS) opsin gene sequence variation in guppies and in closely related species. We focused on this gene because microspectrophotometry (MSP) data indicated that guppies express more than one type of LWS opsin [18,19] and because orange is an important component of female mate choice for these fish [4,20,21,22]

  • Template switching during PCR and/or mismatch repair of cloned heteroduplex molecules has been shown to generate such artefacts [39,40,41,42]

Read more

Summary

Introduction

Comparisons of functionally important changes at the molecular level in model systems have identified key adaptations driving isolation and speciation. Among fish; sticklebacks (genus Gasterosteus), cichlids, and poeciliids, including the guppy (Poecilia reticulata) and swordtails (genus Xiphophorus), are the most important models for the study of sexual selection driven by female choice. In each of these taxa, female mate choice is influenced by male coloration and in each group, male coloration and female preference have a genetic basis [2,3,4,5,6]. In the cichlid genus Pundamilia, LWS opsin sequence and expression appears to be tuned to specific male color morphs [10] It appears that variation in LWS opsin genes influences female mate choice and speciation in this family [11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call