Abstract

N-Glycolylneuraminic acid (NeuGc) is abundantly expressed in most mammals, but it is not detectable in humans. The expression of NeuGc is controlled by cytidine monophospho-N-acetylneuraminic acid (CMP-NeuAc) hydroxylase activity. We previously cloned a cDNA for mouse CMP-NeuAc hydroxylase and found that the human genome contains a homologue. We report here the molecular basis for the absence of NeuGc in humans. We cloned a cDNA for human CMP-NeuAc hydroxylase from a HeLa cell cDNA library. The cDNA encodes a 486-amino acid protein, and its deduced amino acid sequence lacks a domain corresponding to the N-terminal 104 amino acids of the mouse CMP-NeuAc hydroxylase protein, although the human protein is highly identical (93%) to the rest of the mouse hydroxylase protein. The N-terminal truncation of the human hydroxylase is caused by deletion of a 92-base pair-long exon in human genomic DNA. The human hydroxylase expressed in COS-7 cells exhibited no enzymatic activity, and a mouse hydroxylase mutant, which lacks the N-terminal domain, was also inactive. A chimera composed of the human hydroxylase and the N-terminal domain of the mouse hydroxylase displayed the enzyme activity. These results indicate that the human homologue of CMP-NeuAc hydroxylase is inactive because it lacks an N-terminal domain that is essential for enzyme activity. The absence of NeuGc in human glycoconjugates is due to a partial deletion in the gene that encodes CMP-NeuAc hydroxylase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.