Abstract

The current research aimed to explore medium chain triglycerides (MCT) incorporation in liposomes to overcome stability challenges when drugs with high molecular weight and payload are loaded within lipid membranes. A model drug clarithromycin was loaded in lipid dispersions with various MCT/phospholipids ratios (RM/P = 0, 0.5, 1.75 and 7.5 w/w). TEM images demonstrated a liposome-to-emulsion structural transformation by MCT incorporation to cause increased particle size (104.3–167.7 nm) but decreased zeta potential (−63.6 to −44.4 mV) of lipid particles. MCT incorporation produced biphasic release in PBS and accelerated released in plasma. The tolerance of liposomes for thermal sterilization, high temperature test and freeze-thaw cycles were significantly improved by MCT incorporation. However, MCT incorporation produced adverse effects on colloidal stability in plasma and pharmacokinetics behavior in vivo to some extent. MCT stabilizing mechanism attributes to the modulation of drug loading area and stability improvement of lipid carriers. MCT incorporated liposomes achieved 2–3 fold cellular uptake level than traditional liposomes without significant cytotoxicity. These results indicated that MCT incorporation could be a promising strategy to apply in liposome production to achieve stable drug loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.