Abstract

Power production from wind turbines can deviate from the manufacturer’s specifications due to variability in atmospheric inflow characteristics, including stability, wind shear and turbulence. The practice of insufficient data at many operational wind farms has made it difficult to characterize this meteorological forcing. In this study, nacelle wind measurements from a wind farm in the high plains of central North America were examined along with meteorological tower data to quantify the effects of atmospheric stability regimes in the boundary layer on turbine power generation. The wind power law coefficient and the bulk Richardson number were used to segregate time periods by stability to generate regime-dependent power curves. Results indicated underperformance during stable regimes and overperformance during convective regimes at moderate wind speeds (8–12 m s−1). Statistical testing using the Monte Carlo approach demonstrated that these results were robust, despite potential deviations of the nacelle wind speeds from free-stream inflow values due to momentum loss from the turbine structure and spinning rotor. A hypothetical stability dependence between free-stream and nacelle wind speeds was generated that can be evaluated in future analyses. The low instrumentation requirement of our power analysis technique should enable similar studies at many wind sites formerly considered inappropriate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.