Abstract
The proper forecasting of listed companies’ earnings is crucial for their appropriate pricing. This paper compares forecast errors of different univariate time-series models applied for the earnings per share (EPS) data for Polish companies from the period between the last financial crisis of 2008–2009 and the pandemic shock of 2020. The best model is the seasonal random walk (SRW) model across all quarters, which describes quite well the behavior of the Polish market compared to other analyzed models. Contrary to the findings regarding the US market, this time-series behavior is well described by the naive seasonal random walk model, whereas in the US the most adequate models are of a more sophisticated ARIMA type. Therefore, the paper demonstrates that conclusions drawn for the US might not hold for emerging economies because of the much simpler behavior of these markets that results in the absence of autoregressive and moving average parts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.