Abstract

Analyzes the characteristics of rarefied, nonequilibrium-state plasmas in the internal column of a hollow cathode discharge (HCD). The analysis is based on the theory of plasma disintegration in a strong electric field (Dreicer 1959, 1960). It is demonstrated that this process has a crucial influence upon the forming of directed flux of electrons with energy values 20-30 eV at the exit of the hollow cathode. The obtained values significantly exceed the energy of thermal motion of electrons in the plasma disintegration zone. A new method is suggested of calculating electron density and electric field intensity in respect to the axis of the internal column in the channel model of the discharge. In addition, a method is presented of calculating the length of the internal column and the energy of the directed electron flux at the exit of the hollow cathode on the basis of HCD fundamental parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call