Abstract

We consider (1+1) dimensional theory for a single self-dual chiral boson as a classical model for gauge theory. Using the Batalin–Fradkin–Vilkovisky (BFV) technique, the nilpotent BRST and anti-BRST symmetry transformations for this theory have been studied. In this model other forms of nilpotent symmetry transformations like co-BRST and anti-co-BRST, which leave the gauge-fixing part of the action invariant, are also explored. We show that the nilpotent charges for these symmetry transformations satisfy the algebra of the de Rham cohomological operators in differential geometry. The Hodge decomposition theorem on compact manifold is also studied in the context of conserved charges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.