Abstract

Cerebrally-induced responses of pontine nuclei cells (PN cells) were studied in cats anesthetized with pentobarbitone sodium and with the midbrain transected bilaterally sparing only the cerebral penuncles. After stimulating the subcortical white matter, the internal capsule or the cerebral peduncle, mass potentials were recorded from the cut end of fibres in the brachium pontis (BP) and in the pyramid at the level of the trapezoid body. These potentials were regarded as indicating, respectively, the size of an output volley of PN cells and the size of its causative input volley through the pyramidal tract. BP responses consisted of short- and long-latency potentials which were caused by fast and slow conducting pyramidal tract volleys, respectively. The input-output relations for fast component responses took a characteristic S-shaped form resembling those obtained from the monosynaptic spinal reflex. The input-output relations for slow component responses were almost linear. Both fast and slow BP responses were remarkably potentiated after single or relatively brief repetitive peduncular stimulation, but were depressed after long-lasting high-frequency activation. During repetitive stimulation with varied frequencies, fast and slow BP responses showed different patterns of frequency-dependence of their amplitudes. These results suggest the existence of two separate transmission lines with different properties in cerebro-ponto-cerebellar pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.