Abstract

Eukaryotic organisms from yeast to human possess a mitochondrial thioredoxin system composed of thioredoxin and thioredoxin reductase, similar to the cytosolic thioredoxin system that exists in the same cells. Yeast and mammalian mitochondrial thioredoxins are monomers of approximately 12 kDa and contain the typical conserved active site WCGPC. However, there are important differences between yeast and mammalian mitochondrial thioredoxin reductases that resemble the differences between their cytosolic counterparts. Mammalian mitochondrial thioredoxin reductase is a selenoprotein that forms a homodimer of 55 kDa/subunit; while yeast mitochondrial thioredoxin reductase is a homodimer of 37 kDa/subunit and does not contain selenocysteine. A function of the mitochondrial thioredoxin system is as electron donor for a mitochondrial peroxiredoxin, an enzyme that detoxifies the hydrogen peroxide generated by the mitochondrial metabolism. Experiments with yeast mutants lacking both the mitochondrial thioredoxin system as well as the mitochondrial peroxiredoxin system suggest an important role for mitochondrial thioredoxin, thioredoxin reductase, and peroxiredoxin in the protection against oxidative stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.