Abstract
Mitochondrial heat shock proteins and co-chaperones play crucial roles in maintaining proteostasis by regulating unfolded proteins, usually without specific target preferences. In this study, we identify a DNAJC-type co-chaperone: Tcell activation inhibitor, mitochondria (TCAIM), and demonstrate its specific binding to α-ketoglutarate dehydrogenase (OGDH), a key rate-limiting enzyme in mitochondrial metabolism. This interaction suppresses OGDH function and subsequently reduces carbohydrate catabolism in both cultured cells and murine models. Using cryoelectron microscopy (cryo-EM), we resolve the human OGDH-TCAIM complex and reveal that TCAIM binds to OGDH without altering its apo structure. Most importantly, we discover that TCAIM facilitates the reduction of functional OGDH through its interaction, which depends on HSPA9 and LONP1. Our findings unveil a role of the mitochondrial proteostasis system in regulating a critical metabolic enzyme and introduce a previously unrecognized post-translational regulatory mechanism.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have