Abstract

A screen of bacteriophages infecting a panel of Campylobacter jejuni PT14 gene knock-out mutants identified a role for the minor flagellin encoded by the flaB gene, in the defense of the host against CP8unalikevirus bacteriophage CP_F1 infection. Inactivation of the flaB gene resulted in an increase in the susceptibility of PT14 cultures to infection by CP_F1 and an increase in bacteriophage yields. Infection of wild type PT14 with CP_F1 produces turbid plaques in bacterial lawns, from which 78% of the resistant isolates recovered exhibit either attenuation or complete loss of motility. CP_F1 produces clear plaques on the flaB mutant with no regrowth in the lysis zones. Complementation of the mutant restored overgrowth and the development of resistance at the expense of motility. Further analyses revealed an increase in bacteriophage adsorption constant of nearly 2-fold and burst-size 3-fold, relative to the wild type. Motility analysis showed no major reduction in swarming motility in the flaB mutant. Thus, we propose a new role for FlaB in the defense of campylobacters against bacteriophage infection.

Highlights

  • Campylobacter represents a major zoonotic pathogen, as emphasized in recent reports published by the European Food Safety Authority that document year-on-year recorded caseloads of >210.000, which are estimated to belie an actual annual infection rate of 9 million people (EFSA, 2012, 2014, 2015)

  • By screening bacteriophage infection of a number of mutant variants of C. jejuni PT14 we have analyzed the effects of flagella related factors on this process

  • Spot test assays showed a clear dependence on rotating flagella for bacteriophage CP220, as no replication and host lysis was observed for flaA or flaAB mutants (Supplementary Figure S1)

Read more

Summary

Introduction

Campylobacter represents a major zoonotic pathogen, as emphasized in recent reports published by the European Food Safety Authority that document year-on-year recorded caseloads of >210.000, which are estimated to belie an actual annual infection rate of 9 million people (EFSA, 2012, 2014, 2015). Human infection by this gram-negative bacterium leads to gastroenteritis (termed campylobacteriosis) with symptoms including severe abdominal pain, fever and diarrhea (Blaser, 1997; Allos, 2001). Recent estimates suggest a torque of 3600 pN/nm for C. jejuni flagella, which is more than twice as high as that reported for Salmonella cells (Beeby et al, 2016). These high mobility structures together with CadF and FlpA adhesins help withstand

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call