Abstract

The migrator’s equation, which gives the relationship between real and apparent dips on a reflector in zero‐offset reflection seismic sections, may be readily implemented in one step with a frequency‐domain migration algorithm for homogeneous media. Huygens’ principle is used to derive a similar relationship for anisotropic media where velocities are directionally dependent. The anisotropic form of the migrator’s equation is applicable to both elliptically and nonelliptically anisotropic media. Transversely isotropic media are used to demonstrate the performance of an f-k implementation of the migrator’s equation for anisotropic media. In such a medium SH-waves are elliptically anisotropic, while P-waves are nonelliptically anisotropic. Numerical model data and physical model data demonstrate the performance of the algorithm, in each case recovering the original structure. Isotropic and anisotropic migration of anisotropic physical model data are compared experimentally, where the anisotropic velocity function of the medium has a vertical axis of symmetry. Only when anisotropic migration is used is the original structure recovered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.