Abstract
In this paper we are concerned with plane wave discontinuous Galerkin (PWDG) methods for time-harmonic Maxwell equations in three-dimensional anisotropic media, for which the coefficients of the equations are piecewise constant symmetric matrices, where each constant symmetric matrix is defined on a medium (subdomain). By using suitable scaling transformations and coordinate (complex) transformations on every subdomain, the original Maxwell equation in anisotropic media is transformed into a Maxwell equation in isotropic media occupying a union domain of specific subdomains of complex Euclidean space. Based on these transformations, we define anisotropic plane wave basis functions and discretize the considered Maxwell equations by PWDG method with the proposed plane wave basis functions. We derive error estimates of the resulting approximate solutions, and further introduce a practically feasible local hp-refinement algorithm, which substantially improves accuracies of the approximate solutions. Numerical results indicate that the approximate solutions generated by the proposed PWDG methods possess high accuracy for the case of strong discontinuity media.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ESAIM: Mathematical Modelling and Numerical Analysis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.