Abstract
BackgroundHematophagous mosquitoes transmit many pathogens that cause human diseases. Pathogen acquisition and transmission occur when female mosquitoes blood feed to acquire nutrients for reproduction. The midgut epithelium of mosquitoes serves as the point of entry for transmissible viruses and parasites.ResultsWe studied midgut epithelial dynamics in five major mosquito vector species by quantifying PH3-positive cells (indicative of mitotic proliferation), the incorporation of nucleotide analogs (indicative of DNA synthesis accompanying proliferation and/or endoreplication), and the ploidy (by flow cytometry) of cell populations in the posterior midgut epithelium of adult females. Our results show that the epithelial dynamics of post-emergence maturation and of mature sugar-fed guts were similar in members of the Aedes, Culex, and Anopheles genera. In the first three days post-emergence, ~ 20% of cells in the posterior midgut region of interest incorporated nucleotide analogs, concurrent with both proliferative activity and a broad shift toward higher ploidy. In mature mosquitoes maintained on sugar, an average of 3.5% of cells in the posterior midgut region of interest incorporated nucleotide analogs from five to eight days post-emergence, with a consistent presence of mitotic cells indicating constant cell turnover. Oral bacterial infection triggered a sharp increase in mitosis and nucleotide analog incorporation, suggesting that the mosquito midgut undergoes accelerated cellular turnover in response to damage. Finally, blood feeding resulted in an increase in cell proliferation, but the nature and intensity of the response varied by mosquito species and by blood source (human, bovine, avian or artificial). In An. gambiae, enterocytes appeared to reenter the cell cycle to increase ploidy after consuming blood from all sources except avian.ConclusionsWe saw that epithelial proliferation, differentiation, and endoreplication reshape the blood-fed gut to increase ploidy, possibly to facilitate increased metabolic activity. Our results highlight the plasticity of the midgut epithelium in mosquitoes’ physiological responses to distinct challenges.Graphical
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have