Abstract
The human immunodeficiency virus type-1 (HIV-1)-encoded Vif protein is essential for viral replication, virion production, and pathogenicity. HIV-1 Vif interacts with the endogenous human APOBEC3G protein (an mRNA editor) in target cells to prevent its encapsidation into virions. Some studies have established targets within the HIV-1 vif gene that are important for its biologic function; however, it is important to determine effective therapeutic targets in vif because of its critical role in HIV-1 infectivity and pathogenicity. The present study demonstrates that virions generated in transfected HeLa-CD4+ cells, especially from HIV-1 vif frame-shift mutant (3′-Δvif; 5561-5849), were affected in splicing and had low infectivity in MT-4 cells. In addition, HIV-1 vif antisense RNA fragments constructed within the same region, notably the region spanning nucleic acid positions 5561-5705 (M-3′-AS), which corresponds to amino acid residues 96–144, significantly inhibited HIV-1 replication in MT-4 and reduced the HIV-1 vif mRNA transcripts and reporter gene (EGFP) expression. The generated virions showed low secondary infection in H9 cells. These data therefore suggest that the middle to the 3′ end of vif is important for its biological activity in the target cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.