Abstract

AbstractThree kinds of oriented electrodes of Pt, Ir and Pt/Ir electrodes were prepared using electron beam evaporation techniques for deposition of PZT thin films. An oxide MOCVD reactor with liquid delivery system was used for the growth of PZT thin films. [Pb(thd)2], Zr(TMHD)4 and Ti(IPO)4 were dissolved in a mixed solvent of tetrahydrofuran or butyl ether, isopropanol and tetraglyme to form a precursor source. The deposition temperature and pressure were 500 - 650°C and 5 - 10 Torr, respectively. The experimental results showed PZT thin film deposited on various electrodes had different phase formation, microstructure and ferroelectric property. The X-ray patterns showed the perovskite phase of PZT was formed on both Ir and Pt/Ir electrodes at 550°C. The grain size of the PZT thin film increases after a further, higher temperature annealing. The as-deposited PZT thin film on Pt electrode exhibits pyrochlore phase at 550°C. The phase is transformed to perovskite phase after 650°C annealing. The experimental results also indicated that the MOCVD PZT thin film on Pt/Ir exhibits better ferroelectric and electrical properties compared to those deposited on Pt and Ir electrodes. A 300 nm thick PZT thin film on Pt/Ir electrode has a square, well saturated, and symmetrical hysteresis loop with 2Pr value of 40 μC/cm2 and 2Ec of 73 kV/cm at an applied voltage of 5 V. The hysteresis loop of the PZT thin film is almost saturated at 2 V. The leakage current of the film is 6.16 × 10−7 A/cm2 at 100 KV/cm. The electrode effects on ferroelectric properties of PZT thin films also have been investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call