Abstract

The microstructure and electronic structure of silicon-rich oxide (SRO) films were investigated using transmission electron microscopy and electron energy loss spectroscopy as the main analytical techniques. The as-deposited SRO film was found to be a single phase SiO1.0, as suggested by its electronic structure characteristics determined by the valence electron energy loss spectrum. This single phase undergoes a continuous but incomplete phase decomposition to Si and SiO2 for films annealed between 300 and 1100°C. The resulting Si phase first appears as ∼2 nm-diameter amorphous clusters which grow to larger sizes at higher annealing temperatures, but only crystallize at a critical temperature between 800 and 900°C. This cluster/matrix configuration of the SRO films is consistent with the appearance of the interface plasmon and its oscillator strength as a function of the nanoparticle size. Three separate stages were identified in the sequence of annealed films that were characterized by the presence of single-phase SiO, amorphous silicon nanoclusters, and silicon nanocrystals, respectively. The presence of amorphous silicon nanoclusters in the intermediate stage, the mean size of which can be controlled via annealing, may offer an alternative to silicon nanocrystal composites for optical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call