Abstract

Numerous challenges persist with the additive manufacturing of high γ′ containing Ni-based superalloys such as CM247LC. Currently, significant cracking occurs during deposition of CM247LC components using laser powder bed fusion and during post-processing. Whilst post-deposition procedures seek to eliminate or minimise cracks, current procedures do not produce a microstructure suitable for service. This study systematically investigates the microstructural evolution of CM247LC manufactured using laser powder bed fusion following multiple post processing treatments. Phase and textural changes after each processing step were consistent with previous studies, although an additional Hf-rich and Cr-depleted segregation zone was identified along intercellular boundaries in the as-deposited condition, believed to be associated with the cracking propensity. Compositional modification of CM247LC including removal of Hf, reduction of C and addition of Nb eliminated the segregation zone but these changes were associated with an increased susceptibility to solidification and liquation cracking.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.