Abstract

Abstract The core of the Zuccale low-angle normal fault contains a distinctive fault-rock zonation that developed during exhumation, composed of a diversity of fault rocks derived from lithologically heterogeneous wall rocks. Field and microstructural analyses indicate that deformation mechanisms active within the fault core, including brittle fracture, dissolution–precipitation creep and crystal-plasticity, were active broadly contemporaneously. Initially, deformation was accommodated within frictionally weak and inherently stable talc-phyllonites. Although the talc-phyllonites can account for slip at low angles, grain-scale weakening effects were limited by changes over time to the structure of the fault core, resulting from interactions with subsidiary footwall faults. Ultimately, the talc-phyllonites were dismembered into a series of isolated lenses incapable of transmitting grain-scale weakening up to the fault scale. Following this, deformation was accommodated within well-connected units of dolomite-, quartz- and calcite-bearing cataclasite, fault breccia, and foliated fault gouge. Deformation progressively migrated through this latter sequence as a result of precipitation-hardening due to the widespread growth of dolomite. The complexity of fault-zone structure, combined with changes to fault-rock distribution over time, may have resulted in fundamental changes in fault-slip behaviour, an important point to consider given the recent spectrum of slip mechanisms identified along many tectonic faults.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call