Abstract
Despite the fact that 90% of global seismicity occurs at plate boundary faults, our understanding of their internal structure is lacking. It’s not easy to see inside a plate boundary fault – typically composed of a high-strain fault core surrounded by a fractured damage zone – and when we can, it often requires expensive drilling projects that yield limited information on the internal structure of the whole fault. Understanding the internal structure of large faults is crucial, because their chemical and mechanical properties control how and where earthquakes rupture, nucleate and propagate. This in turn limits the size of the earthquake or the amount of radiated seismic energy, and consequently the severity of surface damage. The 1999 magnitude 7.7 earthquake along the Chelungpu plate boundary fault, for example – the second deadliest earthquake in Taiwan’s recorded history – saw significant variations in slip and ground motion at different locations along the fault which resulted in large local variations in casualties and damage. Subsequent field investigations related these variations to changes in the fault’s structure (i.e., clay width, geometry), which in turn controlled how the fault moved.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have