Abstract

The springtail Folsomia candida is an important model organism for soil ecology, ecotoxicology and ecogenomics. The decomposer activities of soil invertebrates like Folsomia depend on their relationship with microbial communities including gut symbionts. In this paper, we apply high-throughput sequencing to provide a detailed characterization of the bacterial community associated with parthenogenetic F. candida. First, we evaluated a method to suppress the amplification of DNA from the endosymbiont Wolbachia, to prevent it from interfering with the identification of less abundant operational taxonomic units (OTUs). The suppression treatment applied was effective against Wolbachia and did not interfere with the detection of the most abundant OTUs (59 OTUs, contributing over 87% of the reads). However, this method did affect the inferred community composition. Significant differences were subsequently observed in the composition of bacterial communities associated with two different strains of F. candida. A total of 832 OTUs were found, of which 45% were only present in one strain and 17% only in the other. Among the 20 most abundant OTUs, 16 were shared between strains. Denaturing gradient gel electrophoresis and clone libraries, although unable to capture the full diversity of the bacterial community, provided results that supported the NGS data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.