Abstract

Limited research exists on carbohydrate intake and oral microbiome diversity and composition assessed with next-generation sequencing. We aimed to better understand the association between habitual carbohydrate intake and the oral microbiome, as the oral microbiome has been associated with caries, periodontal disease, and systemic diseases. We investigated if total carbohydrates, starch, monosaccharides, disaccharides, fiber, or glycemic load (GL) were associated with the diversity and composition of oral bacteria in subgingival plaque samples of 1204 post-menopausal women. Carbohydrate intake and GL were assessed from a food frequency questionnaire, and adjusted for energy intake. The V3–V4 region of the 16S rRNA gene from subgingival plaque samples were sequenced to identify the relative abundance of microbiome compositional data expressed as operational taxonomic units (OTUs). The abundance of OTUs were centered log(2)-ratio transformed to account for the compositional data structure. Associations between carbohydrate/GL intake and microbiome alpha-diversity measures were examined using linear regression. PERMANOVA analyses were conducted to examine microbiome beta-diversity measures across quartiles of carbohydrate/GL intake. Associations between intake of carbohydrates and GL and the abundance of the 245 identified OTUs were examined by using linear regression. Total carbohydrates, GL, starch, lactose, and sucrose intake were inversely associated with alpha-diversity measures. Beta-diversity across quartiles of total carbohydrates, fiber, GL, sucrose, and galactose, were all statistically significant (p for PERMANOVA p < 0.05). Positive associations were observed between total carbohydrates, GL, sucrose and Streptococcus mutans; GL and both Sphingomonas HOT 006 and Scardovia wiggsiae; and sucrose and Streptococcus lactarius. A negative association was observed between lactose and Aggregatibacter segnis, and between sucrose and both TM7_[G-1] HOT 346 and Leptotrichia HOT 223. Intake of total carbohydrate, GL, and sucrose were inversely associated with subgingival bacteria alpha-diversity, the microbial beta-diversity varied by their intake, and they were associated with the relative abundance of specific OTUs. Higher intake of sucrose, or high GL foods, may influence poor oral health outcomes (and perhaps systemic health outcomes) in older women via their influence on the oral microbiome.

Highlights

  • Limited research exists on carbohydrate intake and oral microbiome diversity and composition assessed with next-generation sequencing

  • We hypothesized that the alpha-diversity of the oral microbiome would be associated with intake of total carbohydrates, GL, starch, disaccharides and monosaccharides and that the beta-diversity of the oral microbiome would differ across quartiles of intake in all carbohydrates and glycemic load (GL)

  • GL, total fiber, soluble fiber, insoluble fiber, fructose, galactose, and glucose intake was higher in those with a low compared to high body mass index (BMI)

Read more

Summary

Introduction

Limited research exists on carbohydrate intake and oral microbiome diversity and composition assessed with next-generation sequencing. We investigated if total carbohydrates, starch, monosaccharides, disaccharides, fiber, or glycemic load (GL) were associated with the diversity and composition of oral bacteria in subgingival plaque samples of 1204 post-menopausal women. GL, and sucrose were inversely associated with subgingival bacteria alpha-diversity, the microbial beta-diversity varied by their intake, and they were associated with the relative abundance of specific OTUs. Higher intake of sucrose, or high GL foods, may influence poor oral health outcomes (and perhaps systemic health outcomes) in older women via their influence on the oral microbiome. We studied the association between habitual dietary carbohydrate intake and the subgingival plaque oral microbiome in a cohort of 1204 postmenopausal women, using data from the Buffalo Osteoporosis and Periodontal Disease (OsteoPerio) Study, a cohort study ancillary to the Women’s Health Initiative (WHI) Observational Study (OS)[25]. We hypothesized that the alpha-diversity (within-subject diversity [number of species]) of the oral microbiome would be associated with intake of total carbohydrates, GL, starch, disaccharides (lactose, maltose, sucrose) and monosaccharides (fructose, galactose, and glucose) and that the beta-diversity (between group diversity) of the oral microbiome would differ across quartiles of intake in all carbohydrates and glycemic load (GL)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call