Abstract

Machine tool oscillations are irregular or aperiodic. Most often, these oscillations are chaotic but, in some cases, they can be quasi-periodic or random. The methodology for characterizing oscillations in the first of two steps uses the nonparametric hypothesis tests which the observed oscillations confirmed as irregular. The methodology for the final characterization of oscillations is based on chaos quantifiers. A time series defined as the measured values of oscillations in the time domain is the basis for calculating the quantifiers of chaos. There are four quantifiers of chaos: the Lyapunov exponent, Kolmogorov entropy, fractal dimension and correlation dimension. The correlation dimension and Kolmogorov entropy are important for distinguishing between random and chaotic oscillations. Other quantifiers of chaos are not used for this purpose. The methodology requires a multidisciplinary approach based on combining Nonlinear Dynamics and Probability Theory and Statistics. The methodology can be applied to many oscillating phenomena. Therefore, the paper mainly used the term oscillations, not vibrations, chatter, etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call