Abstract

The inverse problem of coupled static thermo-elasticity in which one has to determine the thermo-elastic stress state in a body from displacements and temperature given on a subset of the boundary is considered. A regularized method of fundamental solutions is employed in order to find a stable numerical solution to this ill-posed, but linear coupled inverse problem. The choice of the regularization parameter is based on the L-curve criterion. Numerical results are presented and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.