Abstract

A general numerical method of characteristics applicable to problems in magneto-fluid dynamics as well as ordinary fluid dynamics is described. The method can be applied to unsteady three-dimensional flows of chemically reacting, non-equilibrium, multi-component media. Dissipative phenomena must be neglected in order to make the governing equations of change hyperbolic, because the method can be applied only to quasi-linear, hyperbolic, partial differential equations. Practical restrictions on computation time usually require unsteady problems to be limited to cases with short transient times although theoretically the method applies to all unsteady flows. In steady flow the local velocity must be greater than the largest local wave speed. The characteristic and compatibility equations are derived for the most general case of magnetofluid dynamics. A new finite-difference network and its corresponding equations are developed similarly. Specialization of the general method to consider simpler problems is outlined. Preliminary numerical results of calculations using the method are presented. The practicality and feasibility of utilizing the general numerical method of characteristics on presently available, electronic digital computers is evaluated in the light of recent experience in calculating multi-dimensional flows with the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.