Abstract

A general method using multipliers for finding the conserved integrals admitted by any given partial differential equation (PDE) or system of partial differential equations is reviewed and further developed in several ways. Multipliers are expressions whose (summed) product with a PDE (system) yields a local divergence identity which has the physical meaning of a continuity equation involving a conserved density and a spatial flux for solutions of the PDE (system). On spatial domains, the integral form of a continuity equation yields a conserved integral. When a PDE (system) is variational, multipliers are known to correspond to infinitesimal symmetries of the variational principle, and the local divergence identity relating a multiplier to a conserved integral is the same as the variational identity used in Noether’s theorem for connecting conserved integrals to invariance of a variational principle. From this viewpoint, the general multiplier method is shown to constitute a modern form of Noether’s theorem in which the variational principle is not directly used. When a PDE (system) is non-variational, multipliers are shown to be an adjoint counterpart to infinitesimal symmetries, and the local divergence identity that relates a multiplier to a conserved integral is shown to be an adjoint generalization of the variational identity that underlies Noether’s theorem. Two main results are established for a general class of PDE systems having a solved-form for leading derivatives, which encompasses all typical PDE systems of physical interest. First, all non-trivial conserved integrals are shown to arise from non-trivial multipliers in a one-to-one manner, taking into account certain equivalence freedoms. Second, a simple scaling formula based on dimensional analysis is derived to obtain the conserved density and the spatial flux in any conserved integral, just using the corresponding multiplier and the given PDE (system). Also, a general class of multipliers that captures physically important conserved integrals such as mass, momentum, energy, angular momentum is identified. The derivations use a few basic tools from variational calculus, for which a concrete self-contained formulation is provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.