Abstract

Despite multimodal treatment, glioblastoma (GBM) therapy with temozolomide (TMZ) remains inefficient due to chemoresistance. Matrix metalloproteinase (MMP) and a disintegrin and metalloprotease (ADAM), increased in GBM, could contribute to chemoresistance and TMZ-induced recurrence of glioblastoma. TMZ inducibility of metalloproteases was determined in GBM cell lines, primary GBM cells, and tissues from GBM and recurrent GBM. TMZ sensitivity and invasiveness of GBM cells were assessed in the presence of the metalloprotease inhibitors batimastat (BB-94) and marimastat (BB-2516). Metalloprotease-dependent effects of TMZ on mitochondria and pAkt/phosphatidylinositol-3 kinase (PI3K) and phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) pathways were analyzed by fluorescence activated cell sorting, morphometry, and immunoblotting. Invasiveness of GBM cells was determined by Matrigel invasion assays. Potential metalloprotease substrates were identified by proteomics and tested for invasion using blocking antibodies. TMZ induces expression of MMP-1, -9, -14, and ADAM8 in GBM cells and in recurrent GBM tissues. BB-94, but not BB-2516 (ADAM8-sparing) increased TMZ sensitivity of TMZ-resistant and -nonresistant GBM cells with different O(6)-methylguanine-DNA methyltransferase states, suggesting that ADAM8 mediates chemoresistance, which was confirmed by ADAM8 knockdown, ADAM8 overexpression, or pharmacological inhibition of ADAM8. Levels of pAkt and pERK1/2 were increased in GBM cells and correlated with ADAM8 expression, cell survival, and invasiveness. Soluble hepatocyte growth factor (HGF) R/c-met and CD44 were identified as metalloprotease substrates in TMZ-treated GBM cells. Blocking of HGF R/c-met prevented TMZ-induced invasiveness. ADAM8 causes TMZ resistance in GBM cells by enhancing pAkt/PI3K, pERK1/2, and cleavage of CD44 and HGF R/c-met. Specific ADAM8 inhibition can optimize TMZ chemotherapy of GBM in order to prevent formation of recurrent GBM in patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.