Abstract
The mammalian circadian timing system is composed of countless cell oscillators distributed throughout the body and central pacemakers regulating temporal physiology and behavior. Peripheral clocks display circadian rhythms in gene expression both in vivo and in culture. We examined the biosynthesis of phospholipids as well as the expression of the clock gene period 1 (Per1) and its potential involvement in the regulation of the phospholipid metabolism in cultured quiescent NIH 3T3 cells synchronized by a 2 h serum shock. A 30 min pulse of radiolabeled precursor was given at phases ranging from 0.5 to 62 h after serum treatment. We observed a daily rhythm in the phospholipid labeling that persisted at least for two cycles, with levels significantly decreasing 29 and 58 h after treatment. Per1 expression exhibited a rapid and transient induction and a daily rhythmicity in antiphase to the lipid labeling. After Per1 expression knockdown, the rhythm of phospholipid labeling was lost. Furthermore, in cultures of CLOCK mutant fibroblasts--cells with a clock mechanism impairment--PER1 was equally expressed at all times examined and the phospholipid labeling did not oscillate. The results demonstrate that the biosynthesis of phospholipids oscillates daily in cultured fibroblasts by an endogenous clock mechanism involving Per1 expression.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have