Abstract
Nonlinear formulations of the meshless local Petrov-Galerkin method (MLPG) are presented for the large deformation analysis of hyperelastic materials which are considered to be incompressible or nearly incompressible. The MLPG method requires no explicit mesh in computation and therefore avoids mesh distortion difficulties. In this paper, a simple Heaviside test function is chosen for reducing the computational effort by simplifying domain integrals for hyperelasticity problems. Trial functions are constructed using the radial basis function (RBF) coupled with a polynomial basis function. The plane stress hypothesis and a pressure projection method are employed to overcome the incompressibility or nearly incompressibility in the plane stress and plane strain problems, respectively. Effects of the sizes of local subdomain and interpolation domain on the performance of the present MLPG method are investigated. The behaviour of shape parameters of multiquadrics (MQ) function has been studied. Numerical results for several examples show that the present method is effective in dealing with large deformation hyperelastic materials problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.