Abstract

A meshless method based on the local Petrov–Galerkin formulation is applied to the large deformation contact analysis of elastomeric components. Trial functions are constructed using the radial-basis function (RBF) coupled with a polynomial-basis function. The plane stress hypothesis and a pressure projection method are employed to overcome the incompressibility or nearly incompressibility in the plane stress and plane strain problems, respectively. Two different sets of equations are used for the nodes on the contact surface and nodes not on the contact surface, respectively, which is based on the meshless local Petrov–Galerkin method (MLPG) establishing equations node by node. Numerical results for several examples show that the present method is effective in dealing with large deformation contact problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.