Abstract
Objective To explore repressive effects of transthyretitin (TTR) on the growth of human retinal endothelial cells (hREC) under high glucose and hypoxia environment. Methods hRECs were divided into 8 groups, including normal glucose group (5.5 mmol/L glucose), hypoxia group, high glucose group (25.0 mmol/L glucose), high glucose and hypoxia group, normal glucose group+TTR, normal glucose and hypoxia group+TTR, high glucose group+TTR, high glucose and hypoxia group+TTR. Flow cytometry was used to analyze cellular apoptosis. The expression level of Akt, p-Akt, eNOS, Bcl-2 and Bax protein were measured by Western blot. Results Hypoxia could induce apoptosis as the apoptosis rate of normal and hypoxia group was higher than normal group (χ2=25.360, P 0.05). Western blot showed that the expression of Akt did not change significantly in all eight groups (F=2.450, P>0.05). Compared to normal group, the expression of p-Akt, eNOS, Bcl-2 in normal and hypoxia group were decreased (t=9.406, 5.306, 4.819), and the expression of Bax (t=−4.503) was increased (P 0.05). Compared to high glucose and hypoxia group, the expression of p-Akt and Bcl-2 in high glucose and hypoxia group+TTR were decreased (t=4.355, 4.308; P 0.05). There was no statistically significant difference in the expression of p-Akt, eNOS, Bcl-2, Bax between high glucose group and normal group (t=−3.407, −4.228, −4.302, −2.076; P>0.05), normal group+TTR and normal group (t=−4.245, −4.298, −2.816, −1.326; P>0.05), high glucose group+TTR and high glucose group (t=4.016, −0.784, 0.707, −0.328; P>0.05). Conclusion Under high glucose and hypoxia, transthyretitin suppress the growth of hREC through Akt/Bcl-2/Bax, but not Akt/eNOS signaling pathway. Key words: Retinal Vessels/cytology; Endothelial cells/physiology; Prealbumin/drug effects
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have