Abstract

Microcystin-leucine arginine (MC-LR) enters into gonadotropin-releasing hormone (GnRH) neurons and induces decline of serum GnRH levels resulting in male reproductive toxicity via hypothalamic-pituitary-testis axis. The organic anion transporting polypeptide 1a5 (Oatp1a5) is a critical transporter for the uptake of MC-LR by GnRH neurons. However, the underlying molecular mechanisms of the transport process are still elusive. In this study, we found that the transmembrane domains 2, 8, and 9 played important roles in transporting function of Oatp1a5. In addition, our data demonstrated that N-linked glycosylation was involved in the transport of MC-LR by Oatp1a5. Moreover, we showed that N-linked glycosylation sites Asn483 and Asn492 were vital for the transport function of Oatp1a5. In summary, the study furthered our understanding of mechanisms that the uptake of MC-LR by GnRH neurons and laid a theoretical foundation for preventing MC-LR from injuring male reproductive health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.