Abstract

Synthesis of linearly fused aromatic systems using a glycal-based diene with an aryne is a long-standing topic of interest in glycal chemistry. We have examined the mechanistic pathways for the transformation of substituted glycals to chiral fused aromatic cores via Diels-Alder (DA) reaction using the SMDACN-M06-2X/6-31G(d) level of theory. The DA reactions of E (1a) and Z (1a') forms of C-2 alkenyl glycal and an aryl glycal (1b) as a diene were examined with a benzyne intermediate generated as a dienophile. The computational results reveal that 1a and 1b can only be transformed into the fused aromatic cores by the base-catalyzed reaction because a [1,5] sigmatropic hydrogen shift is not feasible. The activation free energy barrier for the base-catalyzed proton abstraction process is 4.2 kcal mol-1 and there is almost no barrier for stereoisomeric 1a DA-complexes. The activation free energy barrier values for stereoisomeric 1b DA-complexes for the base-catalyzed proton abstraction process are 10.8 and 12.4 kcal mol-1. The appropriate orientation of glycal-ring-oxygen and hydrogen at the 5th position of Z (1a') forms of C-2 alkenyl glycal facilitates the [1,5] sigmatropic hydrogen shift; however, the base-catalyzed reaction is energetically more favored than the former case. The rate-determining step for 1a and 1a' is the ring-opening step (18.2 and 19.5 kcal mol-1 for the S-stereoisomer), whereas the DA adduct formation step is the rate-determining step for 1b (16.1 kcal mol-1 for the S-stereoisomer). The structural analysis reveals the formation of the preferred S-stereoisomer over the R-stereoisomer with the respective dienes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call