Abstract
An analysis of the stress and deformation in gold beam leads during thermocompression bonding is presented. The analysis isolates two particular bonding processes for study. One has the beams on opposite sides of the chip bonded simultaneously and the other sequentially. Since strains are encountered that are two orders of magnitude greater than the elastic limit, the beam leads are modelled as a work-hardening rigid-plastic material. The independent variables are yield strength, plastic modulus, beam dimensions, chip length, and chip rise (or, bugging height). The dependent variables include strain, beam-centerline geometry, and the force and moment transmitted to the chip. A parametric variation is performed, which shows that increases in yield stress will significantly increase the maximum transmitted force and moment. Increasing beam thickness significantly increases the transmitted force and moment as well as the maximum compressive and tensile strains. Increasing the beam length or decreasing the chip rise will significantly decrease the maximum strains. The results are of interest in the analysis of device damage which occurs during the bonding process. Furthermore, the solution for the beam configuration will be useful in elastic and plastic analyses of power and thermal cycling problems involving goldbeam-lead devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Parts, Hybrids, and Packaging
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.