Abstract

In this paper an engineering model of a high-energy (20 ~ 40 C of charge, 15 ~ 35 kJ) solid-state electrical surge arrestor (ESA) is presented. The basic elements are commercial or custom-made metal oxide varistors (MOV). The approach to achieve a high-coulomb ESA is to use paralleled MOV's with efforts concentrated on ensuring uniform current partition by matching the MOV's conduction characteristics and using ballast resistors. The unit with custom-made large area MOV's survived consecutive 40-C surges of 5-ms exponential decay. The peak current was 6.5 kA at a clamping voltage of 1.1 kV. Design consideration, screening techniques, packaging, and test results are reported. A brief review of the MOV physics is also included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.