Abstract

The mechanical response of tendon is dependent on the interaction of structural molecules that constitute the extracellular matrix. However, little is known about the role of elastic fibers that are present in this structure. Elastase treatments have been used to elucidate the mechanical role of elastic fibers in numerous tissues. Here, we show that a standard elastase treatment affects the mechanical properties of tendon, including the ultimate tensile strength and failure strain. Moreover, elastase-treated specimens exhibit significant structural and compositional changes including crimp undulation and release of glycosaminoglycans. These data demonstrate that a common elastase treatment has a complex digestion profile that influences the structure-function relationship of tendon. Thus, defining the mechanical role of elastic fibers in tendon using this technique is challenging. This introduces new and exciting questions regarding the function of elastic fibers in tendon, which may not be as well understood as previously thought.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.