Abstract

New magnesium nanocomposites reinforced with copper–graphene nanoplatelet hybrid particles have been prepared through the semipowder metallurgy method. Compared with the monolithic Mg, the Mg–1Cu–xGNPs nanocomposites exhibited higher tensile and compressive strength. In tension, nanocomposites revealed substantial enhancement in elastic modulus, 0.2% yield strength, ultimate tensile strength and failure strain (up to +89, +117, +58 and +96% respectively) compared to monolithic Mg. In compression, the nanocomposites showed the greatest improvement in 0.2% yield strength, and the ultimate compressive strength and failure strain (%) (up to +34, +59 and +61% respectively), whilst the compressive elastic modulus first increases and then decreases with an increase in the graphene nanoplatelets (GNPs) contents. The enhanced strength of the composites is likely to result from strengthening mechanisms invoked by the addition of Cu–GNPs hybrids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call