Abstract

PurposeThe process of osteogenic differentiation hinges upon the pivotal role of mechanical signals. Previous studies found that mechanical tensile strain of 2500 microstrain (με) at a frequency of 0.5 ​Hz promoted osteogenesis in vitro. However, the mechanism of the mechanical strain influencing osteogenesis at the cellular and molecular levels are not yet fully understood. This study aimed to explore the mechanism of mechanical strain on osteogenic differentiation of MC3T3-E1 cells. Materials and methodsProteomics analysis was conducted to explore the mechanical strain that significantly impacted the protein expression. Bioinformatics identified important mechanosensitive proteins and the expression of genes was investigated using real-time PCR. The dual-luciferase assay revealed the relationship between the miRNA and its target gene. Overexpression and downexpression of the gene, to explore its role in mechanically induced osteogenic differentiation and transcriptomics, revealed further mechanisms in this process. ResultsProteomics and bioinformatics identified an important mechanosensitive lowexpression protein ATP13A3, and the expression of Atp13a3 gene was also reduced. The dual-luciferase assay revealed that microRNA-3070–3p (miR-3070–3p) targeted the Atp13a3 gene. Furthermore, the downexpression of Atp13a3 promoted the expression levels of osteogenic differentiation-related genes and proteins, and this process was probably mediated by the tumor necrosis factor (TNF) signaling pathway. ConclusionAtp13a3 responded to mechanical tensile strain to regulate osteogenic differentiation, and the TNF signaling pathway regulated by Atp13a3 was probably involved in this process. These novel insights suggested that Atp13a3 was probably a potential osteogenesis and bone formation regulator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.