Abstract

The behavior of the oxygen-containing precipitate in silicon wafer on different stages of the getter formation process is considered from the mechanical point of view. The precipitate is modeled as a spheroidal inclusion undergoing inelastic eigenstrains in an anisotropic silicon matrix. The stress-strain state in the precipitate and matrix is calculated within the framework of the model. An energetic criterion of breaking the spherical shape by the coherent precipitates is obtained and analyzed. Criteria of the formation and onset of motion of the dislocation loops in the vicinity of the precipitate are also proposed. The obtained results are compared with the available experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.