Abstract

While much has been done to study how cartilage responds to mechanical loading, as well as modelling such responses, arguably less has been accomplished around the mechanics of the cartilage-bone junction. Previously, it has been reported that the presence of bony spicules invading the zone of calcified cartilage, preceded the formation of new subchondral bone and the advancing of the cement line (Thambyah and Broom in Osteoarthr Cartil 17:456-463, 2009). In this study, the morphology and frequency of bone spicules in the cartilage-bone interface of osteochondral beams subjected to three-point bending were modelled, and the results are discussed within the context of biomechanical theories on bone formation. It was found that the stress and strain magnitudes, and their distribution were sensitive to the presence and number of spicules. Spicule numbers and shape were shown to affect the strain energy density (SED) distribution in the areas of the cement line adjacent to spicules. Stresses, strains and SED analyses thus provided evidence that the mechanical environment with the addition of spicules promotes bone formation in the cartilage-bone junction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call