Abstract
Ammonium nitrate and semivolatile organic material (SVOM) are significant components of fine particles in urban atmospheres. These components, however, are not properly determined with methods such as the fine particulate matter (PM2.5) Federal Reference Method (FRM) or other single filter samplers because of significant losses of semivolatile material (SVM) from particles collected on the filter during sampling. The R&P tapered element oscillating microbalance (TEOM) monitor also does not measure SVM, because this method heats the sample to remove particle bound water, which also results in evaporation of SVM. Recent advances in monitoring techniques have resulted in samplers for both integrated and continuous measurement of total PM2.5, including the particle concentrator Brigham Young University organic sampling system (PC-BOSS), the real time total ambient mass sampler (RAMS), and the R&P filter dynamics measurement system (FDMS) TEOM monitor. Results obtained using these samplers have been compared with those obtained with either a PM2.5 FRM sampler or a TEOM monitor in studies conducted during the past five years. These studies have shown the following: (1) the PC-BOSS, RAMS, and FDMS TEOM are all comparable. Each instrument measures both the nonvolatile material and the SVM. (2) The SVM is not retained on the heated filter of a regular TEOM monitor and is not measured by this sampling technique. (3) Much of the SVM is also lost during sampling from single filter samplers such as the PM2.5 FRM sampler. (4) The amount of SVM lost from single filter samplers can vary from less than one-third of that lost from heated TEOM filters during cold winter conditions to essentially all during warm summer conditions. (5) SVOM can only be reliably collected using an appropriate denuder sampler. (6) A PM2.5 speciation sampler can be easily modified to a denuder sampler with filters that can be analyzed for semivolatile organic carbon (OC), nonvolatile OC, and elemental carbon using existing OC/elemental carbon analytical techniques. The research upon which these statements are based for various urban studies are summarized in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.