Abstract

AbstractIn previous work by Stoica and Viberg the reduced‐rank regression problem is solved in a maximum likelihood sense. The present paper proposes an alternative numerical procedure. The solution is written in terms of the principal angles between subspaces spanned by the data matrices. It is demonstrated that the solution is meaningful also in the case when the maximum likelihood criterion is not valid. A numerical example is given. Copyright © 2005 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.