Abstract
The reverberation power spectral density (PSD) is often required for dereverberation and noise reduction algorithms. In this work, we compare two maximum likelihood (ML) estimators of the reverberation PSD in a noisy environment. In the first estimator, the direct path is first blocked. Then, the ML criterion for estimating the reverberation PSD is stated according to the probability density function of the blocking matrix (BM) outputs. In the second estimator, the speech component is not blocked. Instead, the ML criterion for estimating the speech and reverberation PSD is stated according to the probability density function of the microphone signals. To compare the expected mean square error (MSE) between the two ML estimators of the reverberation PSD, the Cramer–Rao Bounds (CRBs) for the two ML estimators are derived. We show that the CRB for the joint reverberation and speech PSD estimator is lower than the CRB for estimating the reverberation PSD from the BM outputs. Experimental results show that the MSE of the two estimators indeed obeys the CRB curves. Experimental results of multimicrophone dereverberation and noise reduction algorithm show the benefits of using the ML estimators in comparison with another baseline estimators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Audio, Speech, and Language Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.