Abstract
This article produces a complete list of all maximal subgroups of the finite simple groups of type F_{4}, E_{6} and twisted E_{6} over all finite fields. Along the way, we determine the collection of Lie primitive almost simple subgroups of the corresponding algebraic groups. We give the stabilizers under the actions of outer automorphisms, from which one can obtain complete information about the maximal subgroups of all almost simple groups with socle one of these groups. We also provide a new maximal subgroup of ^{2}!F_{4}(8), correcting the maximal subgroups for that group from the list of Malle. This provides the first new exceptional groups of Lie type to have their maximal subgroups enumerated for three decades. The techniques are a mixture of algebraic groups, representation theory, computational algebra, and use of the trilinear form on the 27-dimensional minimal module for E_{6}. We provide a collection of supplementary Magma files that prove the author’s computational claims, yielding existence and the number of conjugacy classes of all maximal subgroups mentioned in the text.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.