Abstract

It is well known that the stress–strain relationship of blood vessels is highly nonlinear. To linearize the relationship, the Hencky strain tensor is generalized to a logarithmic–exponential (log–exp) strain tensor to absorb the nonlinearity. A quadratic nominal strain potential is proposed to derive the second Piola–Kirchhoff stresses by differentiating the potential with respect to the log–exp strains. The resulting constitutive equation is a generalized Hooke's law. Ten material constants are needed for the three-dimensional orthotropic model. The nondimensional constant used in the log–exp strain definition is interpreted as a nonlinearity parameter. The other nine constants are the elastic moduli with respect to the log–exp strains. In this paper, the proposed linear stress–strain relation is shown to represent the pseudoelastic Fung model very well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.