Abstract

The study aims to compare the performance of two types of material HSS (High Speed Steel) are widely used. It also will be the chemical composition and distribution of carbide particles therein. Two types of HSS are available in the market: HSS from Germany (Bohler) and HSS from China. This research employed the pure experimental design. It consists of two stages. The first, aims to test/operate lathe machines to determine the lifetime and performance of tools based on specified wear criteria. The second, characterization of microstructure using SEM-EDS was conducted. Firstly, grinding of toolss was done so that the toolss could be used for cutting metal in the turning process. Grinding processes of the two types of toolss were done at the same geometry, that is side rake angle (12°-18°), angle of keenness (60°-68°), and side relief angle (10°-12°). Likewise, machining parameters were set in the same machining conditions. Based on the results of the tests, it is found that to reach 0.2 mm wear point, toolss made of HSS from Germany needed 24 minutes, while toolss made of HSS from China needed 8 minutes. Next, microstructure tests using SEM/EDS were done. The results of the SEM tests indicate that the carbide particles of HSS from Germany were more evenly distributed than the carbide particles of HSS from China. Carbide compounds identified in HSS from China were Cr23C6 and Fe4Mo2C. Oxide impurity of Al2O3 was also found in the material. On the other hand, in HSS from Germany, no impurity and other carbide compounds were identified, except Cr23C6 and Fe4Mo2C, also Fe4W2C, and VC or V4C3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.