Abstract

BackgroundProstate cancer (PCa) ranks as the second most prevalent cancer in men, with advanced stages posing significant treatment challenges. Given its solid tumor nature, PCa is highly susceptible to hypoxia, a condition associated with resistance to radiation and chemotherapy, metastasis, and unfavorable patient outcomes. Hypoxia-inducible factors (HIFs) play a pivotal role in cancer cell adaptation to hypoxic environments, contributing to treatment resistance. Consequently, inhibitors targeting HIFs hold promise for cancer therapy.MethodsIn this study, we aimed to characterize novel HIF-1α inhibitors including Sodwanones A (1), B (2), C (3), G (4) and Yardenone 2 (5) isolated from marine sponges belonging to the Axinella genus. Our investigation evaluated the impact of these compounds on various aspects of HIF-1α regulation, including stabilization, nuclear localization, expression of HIF-1 target genes (while sparing HIF-2 target genes), cellular metabolism, as well as cell proliferation and viability in prostate cells under hypoxic conditions.ResultsOur findings revealed that among the compounds tested, Yardenone 2 exhibited notable effects in hypoxia: it destabilized HIF-1α at the protein level, decreased its nuclear localization, selectively altered the expression of HIF-1 target genes, and restrained cell proliferation in aggressive PC3 prostate cancer cells as well as in an MSK-PCa3 patient-derived organoid line. Moreover, it affected the morphology of these organoid. Yardenone 2 was also compared to Docetaxel, a specific microtubule inhibitor and a drug used in the treatment of prostate cancer. The comparison between the two compounds revealed notable differences, such as a lack of specificity to hypoxic cells of Docetaxel.ConclusionThese results mark the first demonstration that Yardenone 2 functions as a cytostatic-like inhibitor impacting microtubules, specifically targeting hypoxic cancer cells. This discovery suggests a promising avenue for novel therapeutic interventions in prostate cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.