Abstract
The process of 3D printing to produce microfluidic chips is becoming commonplace, due to its quality, versatility and newfound availability. In this study, a UV liquid crystal display (LCD) printer has been implemented to produce a progression of microfluidic chips for the purpose of liposomal synthesis. The emphasis of this research is to test the limitations of UV LCD printing in terms of resolution and print speed optimisation for the production of microfluidic chips. By varying individual channel parameters such as channel length and internal geometries, the essential channel properties for optimal liposomal formulation are being investigated to act as a basis for future experimentation including the encapsulation of active pharmaceutical ingredients. Using the uniquely designed chips, liposomes of ≈120 nm, with polydispersity index values of ≤0.12 are able to be reproducibly synthesised. The influence of total flow rates and lipid choice is investigated in depth, to provide further clarification on how a microfluidic setup should be optimised. In-depth explanations of the importance of each channel parameter are also explained throughout, with reference to their importance for the properties of a successful liposome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.