Abstract
Rare-earth orthoferrites are very interesting due to their appealing optical and multiferroic properties. In this study, the magnetic structures and transitions of a typical rare-earth orthoferrite, ErFeO3, have been reinvestigated in detail. The spin-reorientation transition of the Fe3+ magnetic phase and the low-temperature magnetic ordering of Er3+ were observed by neutron powder diffraction. The corresponding magnetic structures have been solved anew by symmetry analysis and refinement of the diffraction results. The magnetic moments of Fe3+ align in an antiferromagnetic way along the c axis with a weak ferromagnetic component along the b axis below the Neel temperature and above the spin-reorientation transition. Below the spin-reorientation transition, the Fe3+ moments rotate into an antiferromagnetic ordering state along the b axis with weak ferromagnetic alignment along the c axis. The spin-reorientation takes place in the bc plane. The Er3+ moments align antiferromagnetically with a Cy mode below...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.