Abstract

We report the magnetic phase diagram of antiperovskite compounds Zn1−xSnxCFe3 (0 ≤ x ≤ 1). The effects of the ratio of Zn/Sn on the structure, magnetic and electrical transport properties have been investigated systematically. With increasing the Sn content x, the lattice constant increases while both the Curie temperature (TC) and the saturated magnetization decrease gradually. All the resistivity curves of Zn1−xSnxCFe3 show a metal-like behavior in measured temperature range (2–350 K). In particular, the T2-power-law dependence of the electrical resistivity is obtained at low temperatures for all samples with x ≤ 0.3. It is noteworthy that, for x = 0.1, the TC is tuned just at the room temperature (∼300 K). Around TC, the magnetocaloric effect is considerably large with a magnetic entropy change of 2.78 J/kg K (ΔH = 45 kOe) as well as a relative cooling power (RCP) of 320 J/kg (ΔH = 45 kOe). Considering the considerably large RCP, suitable working temperature, inexpensive and innoxious raw materials, Zn0.9Sn0.1CFe3 is suggested to be a promising candidate for practical application in magnetic refrigeration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call